

Thermochimica Acta 266 (1995) 293-300

thermochimica acta

Influence of fluorides on polymorphous transformation of α -Al₂O₃ formation $^{\diamond}$

Živan Živković^a, Nada Štrbac^a, Jaroslav Šesták^{b,*}

^a Technical Faculty. Belgrade University, 19210 Bor, Yugoslavia
^b Institute of Physics, Czech Academy of Sciences, 18040 Prague, Czech Republic

Abstract

Results of investigation into the influence of added fluorides (AlF₃, CaF₂, MgF₂, LiF, NaF and Na₃AlF₆, up to 10%) at the temperature of the polymorphous transformation γ -Al₂O₃ $\Rightarrow \alpha$ -Al₂O₃ are presented. It was determined that, at a heating rate of 10°C min⁻¹, addition of 2% fluoride decreases the transformation temperature by 400°C for AlF₃, by 220°C for MgF₂, and by 130°C for CaF₂. The other fluorides have no effect. The mechanism of the influence is determined, and it can be explained by the formation of fluorine bridges between fluoride cations and aluminium on the γ -Al₂O₃ surface.

Keywords: Aluminium; Fluoride; Mechanism; Polymorphism

1. Introduction

 α -Al₂O₃ is produced by calcination of aluminium hydroxide [1]. It is known in the literature [2–4] that addition of low levels of AlF₃ decreases the temperature of the polymorphous transformation of α -Al₂O₃ formation by about 300°C, which is of practical industrial interest.

Živković et al. [2] investigated the influence of AlF₃ (up to 10%) on the kinetics and mechanism of Al(OH)₃ and AlOOH dehydration and on the α -Al₂O₃ polymorphous transformation temperature. In the literature [2–6], different mechanisms for the influence of added fluoride on decreasing the temperature of α -Al₂O₃ forma-

^{*} Corresponding author.

^{*} Dedicated to Hiroshi Suga on the Occasion of his 65th Birthday.

^{0040-6031/95/\$09.50 © 1995 –} Elsevier Science B.V. All rights reserved SSD1 0040-6031(95)02335-6

tion are presented. According to one group of authors, water separated by dehydration of Al(OH)₃ reacts with the added fluoride, forming gaseous HF which enters the γ -Al₂O₃ crystal lattice, making its crystal bonds weaker, which decreases the activation energy for the polymorphous transformation γ -Al₂O₃ $\Rightarrow \alpha$ -Al₂O₃. Accord-

Fig. 1. Part of the DTA curves for α -Al₂O₃ formation with different amounts of added fluorides: a, AlF₃; b, CaF₂; c, MgF₂; d, NaF; e, Na₃AlF₆; f, LiF. Heating rate, 10°C min⁻¹; numbers on the curves indicate the amount of fluoride in the initial Al(OH)₃ sample.

ing to another group of authors, fluoride forms solid solutions with aluminium oxide.

The influence of the fluorides AlF₃, NaF, Na₃AlF₆, MgF₂, CaF₂ and LiF (up to 10%) in a cell for electrolytical production of aluminium at the temperature of the polymorphous transformation of α -Al₂O₃ formation is investigated in this paper. By comparative analysis of the results obtained, an attempt to define the mechanism of processes in the system γ -Al₂O₃-F (F is AlF₃, NaF, Na₃AlF₆, CaF₂, MgF₂ and LiF) is made.

2. Experimental

Industrial aluminium hydroxide produced by KAP (Aluminium Combine Podgorica, Yugoslavia) was used for the experimental investigations. Added fluorides were of analytical grade, and they are also used under industrial conditions in KAP.

Simulation of the calcination process with added fluorides was carried out on a Derivatograph 1500 (MOM, Budapest).

X-ray diffraction analysis was done with a Siemens diffractometer. Recordings were made with a Cu anticathode, the radiation being filtered with nickel filters.

The IR spectra were recorded with a Perkin-Elmer 983G spectrophotometer, using the pellet method. The pellets were prepared by mixing 0.3 mg of the sample with 150 mg of KBr.

Fig. 2. The influence of the different fluorides on the temperature of the polymorphous transformation γ -Al₂O₃ $\Rightarrow \alpha$ -Al₂O₃; heating rate 10°C min⁻¹.

The scanning electron microscopic investigation of the calcinated products was carried out on a Cambridge microscope.

3. Results and discussion

DTA curves for Al(OH)₃ with the fluorides (up to max. 10%) were recorded to determine the influence of different amounts of added fluorides. The results obtained (part of the DTA curve which presents the process γ -Al₂O₃ $\Rightarrow \alpha$ -Al₂O₃) are shown in Fig. 1.

The results obtained, summarized in Fig. 2, clearly show that adding fluorides up to 2% relative to the initial mass of Al(OH)₃, decreases the temperature of the polymor-

Fig. 3. The dependence ΔG_T^0 against f(T) for reaction (1) with the different fluorides used.

phous transformation in the following way: AIF_3 by 400°C, MgF_2 by 220°C, and CaF_2 by 130°C. It can also be concluded that adding NaF, LiF and Na₃AlF₆ does not influence the temperature of the process.

The possible influence of HF, formed by reaction, can be written in general as

$$3H_2O + 6MeF = 3Me_2O + 6HF$$
⁽¹⁾

where H₂O, a product of Al(OH)₃ dehydration, can be neglected because all reactions of type (1), when the fluorides AlF₃, MgF₂, CaF₂, NaF, Na₃AlF₆ and LiF are used, are thermodynamically impossible in that direction at calcination temperatures. From the plot of ΔG_T^O versus temperature in Fig. 3, it can be seen that for all cases in the investigated temperature range, $\Delta G_T^O > 0$.

The experimental proof of this is shown in the DTA curves in Fig. 4, where the curves for fluoride homogenized with γ -Al₂O₃ (no H₂O was present in the system) are shown, i.e. no conditions for reaction (1) were available. Almost the same decrease in polymorphous transformation temperature with added AlF₃, MgF₂ and CaF₂, and the neutral behaviour obtained using NaF, Na₃AlF₆ and LiF, confirm the thermodynamic analysis and the conclusion based on the results shown in Fig. 3.

X-ray analysis shows a slightly deformed crystal lattice of α -Al₂O₃ as a result of the addition of fluorides, which decreases the temperature of formation. With the addition

Fig. 4. DTA curves for γ -Al₂O₃ with 2% F added in the form of different fluorides; heating rate 10°C min⁻¹.

of NaF, Na₃AlF₆ and LiF, which do not affect this temperature, no changes in the lattice parameters for α -Al₂O₃ are found.

The IR spectra for alumina calcinated by the addition of different fluorides, after the exothermic DTA peak, are shown in Fig. 5. For samples with added AIF₃, MgF₂ and CaF₂, spectra showing poorly crystallized α -Al₂O₃ are obtained. For samples with added NaF, Na₃AlF₆ and LiF annealed up to 1250°C, the spectra show similar degrees of α -Al₂O₃ crystallization.

Deformation vibrations of AlO₄ tetrahedra in the 400–500 cm⁻¹ range can be seen on spectra 2, 3 and 4. The 500–680 cm⁻¹ range contains vibrations for AlO₄ octahedra. The interval 750–900 cm⁻¹ displays the bands of the asymmetric valence vibrations of AlO₄ tetrahedra, while the band at 1030 cm⁻¹ corresponds to the vibration of the -O-Al-O- group. These results and the results of scanning electron microscopy (Fig. 6) show the presence of fluorides (MgF₂ and CaF₂) in the crystal lattice of α -Al₂O₃ in the surface layer of the particles.

The data obtained show that fluoride is completely incorporated in the surface of the very active γ -Al₂O₃ by forming bridges between two cations (one from the fluoride and

Fig. 5. IR spectra for α -Al₂O₃ with the addition of different fluorides: 1, no fluoride; 2, AlF₃; 3, MgF₂; 4, CaF₂; 5, NaF; 6, Na₃AlF₆; 7, LiF.

Fig. 6. SEM micrograph of Al_2O_3 , \times 3000: (a), addition of 1% CaF₂; (b), addition of 1% MgF₂.

one from the γ -Al₂O₃ lattice). The decrease in the polymorphous transformation of α -Al₂O₃ formation with up to 2% F added in the form of the fluoride, for constant granulometric composition of the initial Al(OH)₃, shows that when this amount of fluorine is added, all the free places on the γ -Al₂O₃ surface are occupied in bridge formation of the type Me²⁺-F-Al³⁺ (Me²⁺ is Al³⁺, Mg²⁺, Ca²⁺, the cation of the added fluoride).

References

- [1] Ž.D. Živković, Thermochim. Acta, 21 (1979) 391.
- [2] Ž.D. Živkovic, N. Pacović and M. Filipović, Thermochim. Acta, 32 (1979) 181.
- [3] O.V. Bulgakov, A.V. Uvarov and T.V. Antipina, Zh. Phys. Khim., 43 (1969) 681 (in Russian).
- [4] L.A. Paskevic, G.H. Gopinenko and G.A. Zavarickaja, Tsvetn. Metall., 2 (1971) 37.
- [5] R. Odegard, S. Rolseth, S. Ronning and J. Thonstad, Trav. ISCOBA, 13 (1983) 471.
- [6] M. Frankel, A. Glasner and S. Sarig, J. Phys. Chem., 84 (1980) 507.
- [7] S.R. Stojković, Ž.D. Živković, N.D. Štrbać and I.S.G. Stojković, Spectrosc. Lett., 27(9) (1994) 1135.